Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Inj ; 35(10): 1201-1209, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34383626

RESUMO

OBJECTIVE: Nerve damage can cause severe limb dysfunction and even leave a lifelong disability. The apoptosis of astrocytes may contribute to the nerve damage. In this research, we sought to investigate the effect of ß-HB on nerve damage in vitro. DESIGN: Astrocytes were treated with high glucose (HG) to mimic in vitro model of nerve damage. RT-qPCR and western blot were used to detect expressions of CREB, BDNF, Ki-67, PCNA, Bax, Bcl-2 and cleaved caspase 3 in astrocytes, respectively. MTT was used to measure the cell viability. In addition, flow cytometry was used to detect the cell apoptosis. RESULTS: ß-HB significantly promoted the proliferation and inhibited apoptosis in HG-treated astrocytes. Results showed that of PCNA and Bcl-2 were upregulated, and Bax and cleaved caspase 3 were downregulated after ß-HB stimulated in HG-treated astrocytes. In addition, HG-induced inhibition on BDNF expression in astrocytes was notably reversed by ß-HB. Furthermore, ß-HB promoted the growth and inhibited apoptosis of high glucose-treated astrocytes via activation of CREB/BDNF axis. CONCLUSION: ß-HB promotes the growth and inhibits the apoptosis of high glucose-treated astrocytes via activation of CREB/BDNF axis, which may serve as a new target for treatment of nerve damage.


Assuntos
Astrócitos , Fator Neurotrófico Derivado do Encéfalo , Apoptose , Glucose , Transdução de Sinais
2.
J Tissue Eng ; 11: 2041731420933407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637062

RESUMO

Cancer stem cells have been shown to be important in tumorigenesis processes, such as tumor growth, metastasis, and recurrence. As such, many three-dimensional models have been developed to establish an ex vivo microenvironment that cancer stem cells experience under in vivo conditions. Cancer stem cells propagating in three-dimensional culture systems show physiologically related signaling pathway profiles, gene expression, cell-matrix and cell-cell interactions, and drug resistance that reflect at least some of the tumor properties seen in vivo. Herein, we discussed the presently available Cancer stem cell three-dimensional culture models that use biomaterials and engineering tools and the biological implications of these models compared to the conventional ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...